1.2 -A- Rational Numbers

There are different types of numbers:

- Real Numbers:
- Natural
- Integers
- Rational
- Irrational
- Complex Numbers (aka Imaginary Numbers)

Definitions:

$\mathbf{N}:$ Set of Natural numbers : $\{0,1,2,3, \ldots\}$
\mathbf{N}^{*} : Set of non zero natural numbers : $\{1,2,3, \ldots\}$
$\mathbf{Z}:$ Set of Integers : $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbf{Z}^{*} : Set of non zero Integers : $\{\ldots,-3,-2,-1,1,2,3, \ldots\}$
\mathbf{Z}_{+}: Set of positive Integers: $\{0,1,2,3, \ldots) \quad$ same as \mathbf{N}
\mathbf{Z}. : Set of negative Integers: $\{\ldots,-3,-2,-1,0\}$

(1) : Set of Rational numbers

(i.e. numbers that can be written as fractions including terminating decimals ($0.5=\frac{1}{2}$), and repeating decimals ($0 . \overline{5}=\frac{5}{9}$)

Definitions:

(P): are Irrational Numbers, these are non-periodic (non-repeating), non-terminating decimals; so we cannot write them as fractions.
(Ex: $\pi, \sqrt{2}, \sqrt{3}, \sqrt[3]{4}$ etc.)
R: is the Set of Real Numbers, that is all Rational and Irrational numbers: $\mathbf{Q} \cup \mathbf{Q}^{\prime}$ We read this: \mathbf{Q} Union \mathbf{Q} prime.

Ex 1 : place each number in the correct box.

$$
\begin{array}{lllllll}
0 & 0.3 & -3 & -7 & 5 & -2 / 3 & 100
\end{array}
$$

So if we were to put them in nesting boxes (or circles) they would look like this:

\mathbf{N} is a subset of \mathbf{Z} is a subset of \boldsymbol{Q} is a subset of \mathbf{R}
$\mathbf{N} \subseteq \mathbf{Z} \subseteq \boldsymbol{Q} \subseteq \mathbf{R}$
Ex 2: fill using either \subseteq or \nsubseteq or \in or \notin

Top view:

Ex 3 : place each number in the correct box.
$\begin{array}{llllllllll}-1 & -0 . \overline{6} & -\sqrt{5} & 11 / 7 & -12 & \sqrt{4} & 0.5 & \pi & 10 & \sqrt{2}\end{array}$

