## 1.2 – A- Rational Numbers

There are different types of numbers:

- Real Numbers:
  - Natural
  - Integers
  - Rational
  - Irrational
- Complex Numbers (aka Imaginary Numbers)

## Definitions:

N : Set of Natural numbers : {0,1,2,3,...}

**N**<sup>\*</sup> : Set of non zero natural numbers : {1,2,3,...}

- **Z** : Set of **Integers** : {...,-3,-2,-1,0,1,2,3,...}
  - **Z**\* : Set of non zero Integers : {...,-3,-2,-1, 1,2,3,...}
  - **Z**<sub>+</sub>: Set of positive Integers: {0,1,2,3,...} same as **N**
  - **Z** Set of negative Integers: {...,-3,-2,-1,0}

## • Set of Rational numbers

1

(i.e. numbers that can be written as <u>fractions</u> including <u>terminating</u> decimals ( $0.5 = \frac{1}{2}$ ), and <u>repeating</u> decimals ( $0.\overline{5} = \frac{5}{9}$ )

So if we were to put them in nesting boxes (or

circles) they would look like this:

## **Definitions:**

**Q**<sup>•</sup> **:** are Irrational Numbers, these are non-periodic (non-repeating), non-terminating decimals; so we cannot write them as fractions.

(Ex:  $\pi$ ,  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt[3]{4}$  etc.)

R : is the Set of Real Numbers , that is all Rational

and Irrational numbers: **Q** U **Q'** 

We read this: **Q** Union **Q** prime.





0 0.3 -3 -7 5





100

-2/3

 $\subseteq$  means subset;  $\epsilon$  means element of



![](_page_1_Figure_0.jpeg)

Ex 3 : place each number in the correct box.

-1 -0. $\overline{6}$  - $\sqrt{5}$  11/7 -12  $\sqrt{4}$  0.5  $\pi$  10  $\sqrt{2}$ 

![](_page_1_Figure_3.jpeg)

Practice: page 10 # 1-3 page 22 # 1-3

![](_page_1_Picture_5.jpeg)

9